Existence of vertical ends of mean curvature $1/2$ in $\mathbb{H}^{2} ×\mathbb{R}$
نویسندگان
چکیده
منابع مشابه
Delaunay Ends of Constant Mean Curvature Surfaces
We use the generalized Weierstrass representation to analyze the asymptotic behavior of a constant mean curvature surface that locally arises from an ODE with a regular singularity. We show that if system is a perturbation of that of a Delaunay surface, then the corresponding constant mean curvature surface has a properly immersed end that is asymptotically Delaunay. Furthermore, that end is em...
متن کاملDeformations of constant mean curvature 1/2 surfaces in H × R with vertical ends at infinity
We study constant mean curvature 1/2 surfaces in H × R that admit a compactification of the mean curvature operator. We show that a particular family of complete entire graphs over H admits a structure of infinite dimensional manifold with local control on the behaviors at infinity. These graphs also appear to have a half-space property and we deduce a uniqueness result at infinity. Deforming n...
متن کاملConstant mean curvature surfaces with cylindrical ends
R. Schoen has asked whether the sphere and the cylinder are the only complete (almost) embedded constant mean curvature surfaces with finite absolute total curvature. We propose an infinite family of such surfaces. The existence of examples of this kind is supported by results of computer experiments we carried out using an algorithm developed by Oberknapp and Polthier. The cylinder of radius 1...
متن کاملConstant mean curvature surfaces with three ends.
We announce the classification of complete almost embedded surfaces of constant mean curvature, with three ends and genus zero. They are classified by triples of points on the sphere whose distances are the asymptotic necksizes of the three ends.
متن کاملConstant mean curvature surfaces with Delaunay ends
In this paper we shall present a construction of Alexandrov-embedded complete surfaces M in R with nitely many ends and nite topology, and with nonzero constant mean curvature (CMC). This construction is parallel to the well-known original construction by Kapouleas [3], but we feel that ours somewhat simpler analytically, and controls the resulting geometry more closely. On the other hand, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2012
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-2011-05361-4